THE INTERSECTION OF DEEP LEARNING AND ORAL CANCER RESEARCH: A KEYWORD COOCCURRENCE NETWORK ANALYSIS

R. Senthil^{1*}

¹Department of Bioinformatics, School of Lifesciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India.

Article Info

Article history:

Received July 25th, 2024 Revised August 12th, 2024 Accepted August 19th, 2024

Keyword:

Oral cancer
Deep learning
Imaging techniques
Keyword cooccurrences
Diagnosis

ABSTRACT

Integrating artificial intelligence (AI) into medical research has fundamentally transformed the identification and management of diseases, particularly in oral cancer research, where deep learning has demonstrated considerable potential. The complexity of the causes and the delayed diagnosis of oral cancer present significant problems. This report investigates the use of keyword cooccurrence network analysis to visually represent the research field of deep learning applications in oral cancer. The network reveals the advancements in Convolutional neural networks (CNNs), a type of deep learning that enhances diagnosis accuracy and enables early intervention. Analyzing the cooccurrences of significant phrases can improve the possibilities for future research and the outcomes for patients.

Copyright © 2024 International Journal of Biotechnology and Clinical Medicine

http://www.ijbtcm.com, All rights reserved.

Corresponding Author:

Dr. R. Senthil, Department of Bioinformatics, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, India.

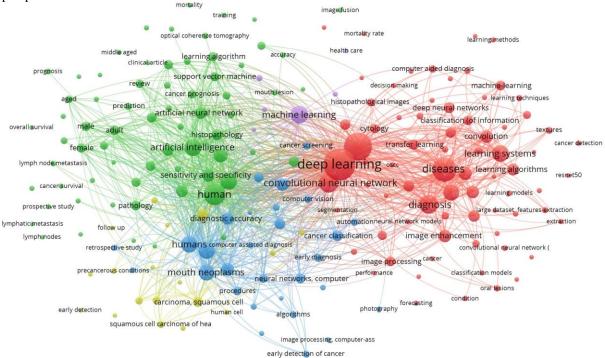
Email: renganathansenthil@gmail.com

How to Cite:

Senthil R. The intersection of deep learning and oral cancer research: A keyword cooccurrence network analysis. IJBTCM. 2024; Volume 3 (Issue 3): Page 75-77.

Incorporating artificial intelligence (AI) into medical research has fundamentally transformed numerous facets of disease detection and therapy [1,2]. An area that shows excellent potential is using deep learning methods in oral cancer research [3–5]. Oral cancer, which is a kind of head and neck cancer, poses considerable difficulties in terms of diagnosis and treatment due to its intricate causes and frequently delayed detection [6–8]. Conventional detection and analysis methods are progressively being complemented and even substituted by sophisticated AI technologies, including deep learning. This article examines how keyword cooccurrence network analysis can be used to map the research landscape of deep learning applications in oral cancer.

Deep learning is an advanced form of machine learning that utilizes neural networks with numerous layers to represent intricate patterns in data accurately. The use of this technology in medical imaging has demonstrated remarkable potential. Convolutional neural networks (CNNs), a specific sort of deep learning architecture, have shown remarkable effectiveness in examining medical images to identify various diseases, such as oral cancer, at an early stage [9–12]. These models can detect intricate patterns in imaging data that may not be noticeable to human radiologists. As a result, they improve the accuracy of diagnoses and allow for early intervention. Studies have shown that CNNs may effectively detect cancerous tumors in oral tissues using digital images, potentially surpassing established diagnostic procedures [13,14]. This capacity is vital due to the predictive significance of detecting oral cancer at an early stage. In addition, deep learning models can be taught to forecast patient outcomes using diverse inputs, such as histopathology data, genetic profiles, and textual information extracted from electronic health records (EHRs).


Keyword cooccurrence network analysis is an effective bibliometric technique employed to visually represent and examine the connections between essential terms in a collection of literature [15,16]. Researchers can uncover central themes, developing trends, and multidisciplinary links by analyzing the frequency of specific

Journal homepage: www.ijbtcm.com

terms appearing together in academic publications. This strategy is especially beneficial in quickly advancing domains such as AI and medical research, where the sheer number of papers can be daunting.

The Scopus database was queried using the keywords "deep learning AND oral cancer" to retrieve academic publications. A total of 272 research outputs were included in the present investigation. Scopus is an internet-based database and analytical tool that grants access to a worldwide collection of scholarly literature metadata, including citation indexing. A total of 272 publications were downloaded in RIS format. Subsequently, the files were employed for network analysis using the VOSviewer software (https://www.vosviewer.com/), from which keywords were collected.

Keyword cooccurrence networks in deep learning and oral cancer research provide insights into the most significant studies, prominent research clusters, and potential gaps in the existing literature (Figure 1). An analysis of the network about this issue reveals significant cooccurrences among phrases such as "CNN," "oral cancer diagnosis," and "medical imaging," suggesting a substantial body of research in this field. On the other hand, less strong links could bring attention to subjects that have yet to be thoroughly examined or present new prospects for research.

Figure 1. Networks of keyword cooccurrences by topic "deep learning and oral cancer." The keywords and their cooccurrence in the study are expressed as nodes and links, respectively. Node sizes are scaled by degrees (number of occurrences of a keyword with others), and colors reflect the proportion of occurrences in each topic.

The potential of keyword cooccurrence network analysis in deep learning and oral cancer research is highly promising. The ongoing development of AI technology and growing interdisciplinary collaboration are expected to improve this field substantially. With the increasing availability of data, the performance of deep learning models for detecting and predicting the prognosis of oral cancer will continue to enhance. By incorporating various data sources, including genetic, proteomic, and environmental data, the accuracy of these models will be improved, resulting in more individualized and efficient treatment approaches [17–22]. In addition to detection and prognosis, deep learning can also be utilized in other areas of oral cancer care, including treatment planning and monitoring. Keyword cooccurrence network analysis can enhance innovation and patient outcomes by systematically mapping the research landscape, finding significant trends and gaps, and promoting interdisciplinary collaboration. To fully realize these benefits, it will be crucial to tackle the issues related to data quality, volume, and complexity. As we further allocate resources to this interdisciplinary approach, the outlook for oral cancer research becomes increasingly optimistic, with AI positioned to have a pivotal impact on enhancing diagnostic and therapeutic methods.

FUNDING Nil

ETHICAL APPROVAL

Nil

COMPETING INTEREST

The authors declare no conflict of interest.

REFERENCES

- [1] Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2020;19:353–64. https://doi.org/10.1038/s41573-019-0050-3.
- [2] Saravanan KM, Zhang H, Hossain MT, Reza MS, Wei Y. Deep Learning-Based Drug Screening for COVID-19 and Case Studies BT In Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols. In: Roy K, editor., New York, NY: Springer US; 2021, p. 631–60. https://doi.org/10.1007/7653_2020_58.
- [3] Varalakshmi D, Tharaheswari M, Anand T, Saravanan KM. Transforming oral cancer care: The promise of deep learning in diagnosis. Oral Oncol Reports 2024;10:100482. https://doi.org/https://doi.org/10.1016/j.oor.2024.100482.
- [4] Sreeraman S, Kannan PM, Singh Kushwah RB, Sundaram V, Veluchamy A, Thirunavukarasou A, et al. Drug Design and Disease Diagnosis: The Potential of Deep Learning Models in Biology. Curr Bioinform 2023;18:208–20. https://doi.org/http://dx.doi.org/10.2174/1574893618666230227105703.
- [5] Zhang H, Saravanan MK. Advances in Deep Learning Assisted Drug Discovery Methods: A Self-review. Curr Bioinform 2024;19:1–17. https://doi.org/http://dx.doi.org/10.2174/0115748936285690240101041704.
- [6] González-Moles MÁ, Aguilar-Ruiz M, Ramos-García P. Challenges in the Early Diagnosis of Oral Cancer, Evidence Gaps and Strategies for Improvement: A Scoping Review of Systematic Reviews. Cancers (Basel) 2022;14:4967. https://doi.org/10.3390/cancers14194967.
- [7] Saberian E, Jenča A, Petrášová A, Jenčová J, Atazadegan Jahromi R, Seiffadini R. Oral Cancer at a Glance. Asian Pacific J Cancer Biol 2023;8:379–86. https://doi.org/10.31557/apjcb.2023.8.4.379-386.
- [8] Sundaram KKM, Bupesh G, Saravanan KM. Instrumentals behind embryo and cancer: a platform for prospective future in cancer research. AIMS Mol Sci 2022;9:25–45. https://doi.org/10.3934/molsci.2022002.
- [9] Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023;15:3608. https://doi.org/10.3390/cancers15143608.
- [10] Das DK, Bose S, Maiti AK, Mitra B, Mukherjee G, Dutta PK. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis. Tissue Cell 2018;53:111–9. https://doi.org/https://doi.org/10.1016/j.tice.2018.06.004.
- [11] Zhang H, Zhang T, Saravanan KM, Liao L, Wu H, Zhang H, et al. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening. Methods 2022;205:247–62. https://doi.org/10.1016/j.ymeth.2022.07.009.
- [12] Zhang H, Saravanan KM, Lin J, Liao L, Ng JT-Y, Zhou J, et al. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation. PeerJ 2020;8:e8864. https://doi.org/10.7717/peerj.8864.
- [13] Lin H, Chen H, Weng L, Shao J, Lin J. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. J Biomed Opt 2021;26:86007. https://doi.org/10.1117/1.JBO.26.8.086007.
- [14] Zhang H, Saravanan KM, Zhang JZH. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein–Ligand Interaction Prediction. Molecules 2023;28:4691. https://doi.org/10.3390/molecules28124691.
- [15] Narong DK, Hallinger P. A Keyword Cooccurrence Analysis of Research on Service Learning: Conceptual Foci and Emerging Research Trends. Educ Sci 2023;13. https://doi.org/10.3390/educsci13040339.
- [16] Senthil R, Anand T, Somala CS, Saravanan KM. Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions. Futur Healthc J 2024;11:100182. https://doi.org/https://doi.org/10.1016/j.fhj.2024.100182.
- [17] Vijayaram S, Kannan S, Saravanan KM, Vasantharaj S, Sathiyavimal S, P PS. Preliminary phytochemical screening, Antibacterial potential and GC-MS analysis of two medicinal plant extracts. Pak J Pharm Sci 2016;29:819–22.
- [18] Zhang H, Fan H, Wang J, Hou T, Saravanan KM, Xia W, et al. Revolutionizing GPCR-Ligand Predictions: DeepGPCR with experimental Validation for High-Precision Drug Discovery. Brief Bioinform 2024;25:bbae281. https://doi.org/10.1101/2024.02.25.581988.
- [19] Saravanan KM, Wan J-F, Dai L, Zhang J, Zhang JZH, Zhang H. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity. Methods 2024;226:164–75. https://doi.org/https://doi.org/10.1016/j.ymeth.2024.04.020.
- [20] Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a chemotherapeutic lead molecule for the potential disruption of the FAM72A-UNG2 interaction to interfere with genome stability, centromere formation, and genome editing. Cancers. 2021 Nov 22;13(22):5870.https://doi.org/10.3390/cancers13225870
- [21] Senthil R, Usha S, Saravanan KM. Importance of fluctuating amino acid residues in folding and binding of proteins. Avicenna Journal of Medical Biotechnology. 2019 Oct;11(4):339.
- [22] Saravanan KM, Senthil R. PreFRP: Prediction and visualization of fluctuation residues in proteins. Journal of Natural Science, Biology, and Medicine. 2016 Jul;7(2):124.